Cookie Consent by TermsFeed

Data Science, Data Analysis & Data Engineering – die Disziplinen der Datenanalyse!

20. Oktober 2022

Die Antwort oder auch manchmal die Frage liegt in den Daten. Während dies für fortschrittliche Unternehmen bereits länger eine Selbstverständlichkeit ist, findet der Mehrwert von Daten auch in der breiten Masse immer mehr Anerkennung. Im Wesentlichen liefern Daten die Basis für:

  • Unternehmensentscheidungen (z. B. Führungsebene, Einkauf)
  • Prognosen (z. B. Trends, Absatzentwicklung)
  • Performance-Messungen (z. B. Unternehmenserfolg, Leistung)

Diese drei Punkte – so minimalistisch sie erscheinen mögen, zeigen, weshalb Unternehmen, die den Wert von Daten erkannt haben, tendenziell erfolgreicher sind. Damit Daten aber auch die gewünschten Fragen – oder eben auch Antworten liefern, bedarf es der richtigen Datenaufbereitung, Analyse, Visualisierung der Daten und einer Reihe weiterer Bearbeitungsschritte. Viele Aufgaben in diesem Gebiet fallen in die Disziplinen Data Engineering, Data Science und Data Analytics. Hier erfahren Sie, welche Aufgaben diese Bereiche erledigen, wo die Unterschiede liegen und wie sie miteinander verknüpft sind.

Data Engineering

Data Engineering kümmert sich um die Generierung, Sammlung, Pflege, Aufbereitung, Anreicherung, Validierung und Weitergabe von Daten. Es schafft ausserdem eine geeignete Infrastruktur und passende Anwendungen für die Analyse. Data Engineering legt somit den Grundstein für Datenanalysen. Zusammengefasst kann Data Engineering die folgenden Teilgebiete umfassen:

  • Schaffung relevanter und belastbarer Datensätze
  • Konzeption und Bereitstellung einer Systemarchitektur
  • Programmierung entsprechender Anwendungen
  • Design & Konfiguration von Datenbanken
  • Sensoren- und Schnittstellenkonfiguration

Personen, die in dieser Disziplin arbeiten, tun dies unter den Berufsbezeichnungen Data Engineer, Dateningenieur, Big Data Engineer oder auch Big Data Architekt. Dateningenieure arbeiten zum Beispiel mit Programmen wie Python, SQL und Linux und sollten unter anderem auch über Kompetenzen in den Bereichen Cluster-Management, Datenvisualisierung, Batch-Verarbeitung und Machine Learning verfügen. Während Data Engineers nicht an der Analyse von Daten beteiligt sind, brauchen sie dennoch ein grundlegendes Verständnis von Unternehmensdaten, um eine geeignete Architektur zu schaffen. Die Qualität dieser steht und fällt mit der Fähigkeit, Datenpipelines zu schaffen und zu pflegen.

Data Science

Bei Data Science (zu Deutsch Datenwissenschaft) handelt es sich um eine interdisziplinäre Wissenschaft. Es verbindet Methoden und Wissen aus der Mathematik, der Informatik und dem branchenspezifischen Sektor, in dem die Disziplin angewendet wird. Im Rahmen von Data Science werden grosse Datenmengen (Big Data) analysiert. Die Ergebnisse aus diesen Analysen können als Entscheidungsgrundlage zur Feststellung von Anomalien oder als „Blick in die Zukunft“ (Prognose zukünftiger Ereignisse oder Entwicklungen) dienen. In erster Linie wird durch Data Science neues Wissen generiert. Dies betrifft potenziell auch Wissen über unbekannte Bereiche, von welchen nicht bekannt war, dass sie unbekannt sind. So können auch neue Lösungswege für bisher unbekannte Probleme identifiziert werden. Der eigentliche Fokus liegt darauf, Fragen zu identifizieren, ohne wirklich darauf abzuzielen, spezifische Antwort zu finden. Personen, die in diesem Bereich tätig sind, werden als Data Scientists oder auch Datenwissenschaftler bezeichnet und können aus diversen Disziplinen stammen (z. B. Informatiker, Betriebswirtschaftlerinnen, etc.). Die Analysen von grossen Datenmengen werden im Data Science durch Maschinelles lernen (MI) und Künstliche Intelligenz (KI) durchgeführt. Im Vergleich zu Business Intelligence, das darauf ausgerichtet ist, vergangene Daten zu interpretieren (deskriptive Analyse) analysiert Data Science vergangene Daten, um zukünftige Vorhersagen zu treffen (prädiktive Analyse).

Data Analysis

Im Rahmen der Data Analysis (zu Deutsch Datenanalyse) liegt der Fokus auf der statistischen Analyse von bereits existierenden Datensätzen. Das Ziel ist die Kreation von Methoden, mithilfe derer Daten erfasst, verarbeitet und organisiert werden können, um im Anschluss Lösungen auf vorliegende Probleme zu finden. Generell setzt sich die Datenanalyse mit spezifischen Themen auseinander und dient dabei der Beantwortung konkreter Fragen. Personen, die in diesem Bereich tätig sind, werden Datenanalysten genannt. Als Grundlage ihrer Analysen dienen ihnen Daten in Form von Datenmodellen oder Tools wie interaktive Dashboards und KPIs.

Die Unterschiede zwischen den Disziplinen

Eine Grafik die die Verknüpfung der Tätigkeiten des Data Engineers, des Data Scientists und des Data Analysts zeigt.

Wie an den Definitionen der einzelnen Disziplinen erkennbar ist, sind diese eng miteinander verknüpft.

Data Engineer & Data Scientist

Dateningenieure legen den Grundstein für das Gebiet Data Science. Sie liefern formatierte, skalierbare und sichere Daten. Dazu bedarf es Kenntnisse in den Bereichen Programmierung und Systemarchitektur. Gutes Data Engineering zeichnet sich dadurch aus, dass es die Ansprüche des Data Science antizipiert und Daten entsprechend aufbereitet und zur Verfügung stellt. Die Disziplin Data Science nimmt diese Daten und generiert mittels robuster Algorithmen Erkenntnisse. Dafür braucht es im Data Science Bereich sowohl Programmier- als auch Analysekenntnisse.

Data Scientist & Data Analyst

Werden die Aufgaben von Datenwissenschaftlern und Daten Analysten verglichen, so liegt der Unterschied in erster Linie in Ihrem Fokus. Erstere beschäftigen sich mit einem Thema auf einer Makro- und zweitere auf einer Mikro-Ebene. Dabei befassen sich Data Scientists mit der Identifikation neuer Aspekte, beziehungsweise ist es ihr Ziel, festzustellen, welche Fragen sich eine Organisation eigentlich fragen sollte. Es geht somit um die Exploration von neuen Trends und Entwicklungen und die Identifikation optimierter Analysemethoden. Data Analysten wollen hingegen Antworten auf konkrete Fragen finden beziehungsweise unmittelbar einsetzbare Daten identifizieren. Folgt Data Analysis somit auf Data Science, können zu den unspezifischen Fragen dank weiterer Analyse, nutzbare Insights generiert werden.

FAQ

foto by pexels.com

Newsletter Anmeldung

Bleiben Sie auf dem Laufenden und erfahren Sie mehr rund um das Thema Steuern, Unternehmensbewertung & Digitalisierung im Treuhandbereich!

Weitere empfohlene Beiträge
Sozialversicherungen 2019

In der Beilage erhalten Sie die Übersicht der Sozialversicherungen 2019 als pdf-Datei. Die Beitragssätze der AHV/IV/EO sowie der ALV bleiben im Vergleich zum Vorjahr unverändert. Eine Änderung gibt es bei der gebundenen Vorsorge. Der Maximalbetrag bei der freiwilligen Säule 3a für Versicherte mit 2. Säule beträgt 2019 CHF 6’826. Die Übersicht der Sozialversicherungen 2019 finden […]

18. Dezember 2018
...
Revidiertes Aktienrecht: die Vorlage ist erstmals von beiden Räten behandelt!

Was bisher geschah: Im Dezember 2007 verabschiedete der Bundesrat die Botschaft zur Revision des Aktien- und Rechnungslegungsrechts. Am 15. Juni 2018 hiess der Nationalrat die Aktienrechtsreform knapp mit 101 Ja zu 94 Nein-Stimmen gut. Am 11.12.2018 hat der Ständerat mit 23 Ja zu 20 Nein-Stimmen Eintreten auf die Vorlage beschlossen. Am 19.06.2019 hat der Ständerat […]

28. Juni 2019
...
Home-Office Kosten in der Steuererklärung

Bereits vor der Corona-Krise gab es einen Trend zu immer flexibleren Arbeitsmodellen, wobei immer mehr Arbeitnehmer teilweise im Home-Office arbeiten. Spätestens als der Bundesrat im Rahmen der Corona-Massnahmen das Arbeiten zuhause zuerst als Empfehlung und schliesslich als Pflicht verordnete, stellt sich für viele Arbeitnehmer die Frage, ob die Kosten für das private Arbeitszimmer, den Laptop […]

2. März 2021
...
Eine Schweizer Tradition stirbt einen langsamen Tod

Die Inhaberaktie steht vor dem Aus. Als Mittel zur schnellen Geldbeschaffung gedacht, bekam sie weltweit einen zunehmend schlechten Ruf. Die Inhaberaktie wird es ab 1.November 2019 nicht mehr geben. Zumindest wird sie die Anonymität des Besitzers nicht mehr gewährleisten. Dann tritt nämlich das Bundesgesetz zur Umsetzung von Empfehlungen des Global Forum über Transparenz und Informationsaustausch […]

22. November 2019
...
Weitere empfohlene Beiträge
Bundesgesetz über die Steuervorlage 17: Update

Der Deal mit Steuerreform und AHV kommt in den Schlussabstimmungen ohne Überraschungen durch. Nationalrat und Ständerat haben in den Schlussabstimmungen der Herbstsession keine Überraschungen produziert und dem Geschäft zugestimmt. Der Ständerat sagte Ja mit 39 zu 4 Stimmen, der Nationalrat sagte Ja mit 112 zu 67 Stimmen. Allerdings ist die Wahrscheinlichkeit gross, dass es zu […]

8. November 2018
...
Was ist Business Intelligence (BI) & wie werden Daten in Wissen verwandelt?

Während sich Business Intelligence mittlerweile am Markt etabliert hat, gibt es nach wie vor keine einheitliche Definition für diesen Begriff. Es gibt zum Beispiel eine Business Intelligence Definition, die auf den Analysten [...]

2. Juni 2021
...
Unternehmenssteuern: Der Schweiz droht schon wieder massiver Ärger an der Steuerfront

(Unlauterer) Steuerwettbewerb Die seit längerem anhaltende öffentliche Kritik, dass sich vor allem Digitalkonzerne vor Steuerzahlungen drücken können, zeigt Wirkung. Die OECD plant ein globales Modell zur Besteuerung der Digitalwirtschaft. Laut der Europäischen Kommission werden die Gewinne von Web-Giganten in mehreren europäischen Ländern mit Gewinnsteuersätzen von unter 10 % besteuert, während andere Unternehmen durchschnittlich mit Gewinnsteuersätzen […]

22. Juli 2019
...
Weitere empfohlene Beiträge
Transfer Pricing: Definition, Nutzen & Berechnung des Verrechnungspreises

Beim Transfer Price - zu Deutsch Verrechnungspreis - handelt es sich um die Summe, die verrechnet wird, wenn Leistungen innerhalb eines Unternehmens erbracht oder bezogen werden. [...]

20. März 2023
...
Datenvisualisierung – Tools & Vorgehen bei der Visualisierung von Daten

Was sind Datenvisualisierungstools? Datenvisualisierungstools sind Programme, die Daten rendern und visuell darstellen. Dies geschieht zum Beispiel anhand von Graphen, Charts oder Heat Maps. Diese Tools erleichtern die Arbeit mit grossen Datenmengen erheblich. [...]

11. August 2021
...