Cookie Consent by TermsFeed

Datenvisualisierung – das macht die Visualisierung von Daten aus & diese Vorteile bringt Sie mit sich!

15. Juli 2021

Was versteht man unter Datenvisualisierung? Datenvisualisierung (=data visualisation) überführt grosse und kleine Datensätze durch grafische Darstellung in eine einfach verständliche und aussagekräftige Form. Im Zuge dieser Darstellung werden Muster, Trends, Ausreisser und Abhängigkeiten ersichtlich. Die Datenvisualisierung macht sich Techniken der Datenanalyse zu nutzen. Die visuelle Darstellung von Daten beziehungsweise Datenmengen, macht diese für das menschliche Gehirn greifbarer. Dabei fällt es Menschen leichter, Farben und Muster zu verarbeiten als eintönige Zeilen und Spalten, welche mit unübersichtlichen Daten gefüllt sind. Datenvisualisierung gilt als ein wesentlicher Bestandteil und Vorteil von BI-Systemen.

Daten, Visualisierungen und Co. – diese Begriffe sollten Sie kennen!

Für ein besseres Verständnis zum Thema Datenvisualisierung kann es zunächst hilfreich sein, die beiden Bereiche Daten und Visualisierung voneinander getrennt zu betrachten. Hierzu werden die folgenden beiden Fragen beantwortet:

Was sind Daten?

Unter Daten werden Informationen verstanden, beziehungsweise Informationseinheiten. Daten können zum Beispiel in Form von Text, aber auch als Zahlen, Tabellen, Datenbanken, Bildern, Audiodateien, Videos etc. auftreten.

Was bedeutet Visualisierung?

Im Rahmen der Visualisierung geht es darum, Daten durch Bilder, Symbole und weitere visuelle Elemente zu erklären und darzustellen. Dem Gehirn werden somit erweiterte Möglichkeiten geboten, die dabei helfen, Gesagtes oder Geschriebenes zu verarbeiten. In diesem Zusammenhang ist es wichtig, Daten, Informationen und Wissen zu unterscheiden. Dabei wird unter Daten (z. B. 2020) per se nur eine Ansammlung von Symbolen und Zeichen verstanden. Diese werden erst durch die Ergänzung um einen Kontext (z. B. Break-even-Point 2020) zu Informationen. Auch Informationen sind ohne zusätzliches Wissen eher nutzlos. Sobald Informationen aber verarbeitet, verknüpft und gespeichert werden, werden sie zu Wissen (Break Even-Point 2020 des Unternehmens XY). Wissen beschreibt somit die gesammelten Informationen, die über einen bestimmten Sachverhalt zur Verfügung stehen.

Vorteile der Datenvisualisierung

Moderne Datenvisualisierung bringt zahlreiche Vorteile für Unternehmen mit sich. Im Folgenden werden die essenziellsten aufgezählt:

  • Daten im korrekten Kontext darstellen – Wie bereits erwähnt, brauchen Daten Kontext um zu Informationen und im nächsten Schritt zu Wissen zu werden. Dies ermöglicht die visuelle Darstellung. Dabei können verschiedene Diagrammarten zueinander in Bezug gesetzt werden, um in der Folge Informationen zu einem Sachverhalt gesammelt, darzustellen.
  • Erkenntnisse aus grossen Datenquellen & Lieferung wichtiger Insights – Grosse Datensätze machen es oft schwer, die richtigen Informationen aus den Daten zu extrahieren. Die Visualisierung von Daten kann hierbei Abhilfe leisten.
  • Rasche und einfache Erkennung von Trends und Mustern -Unternehmerische Entscheidungen werden häufig von KPIs (=Key Performance Indikatoren) abhängig gemacht. Die Visualisierung der Veränderung dieses Indikators über einen Zeitraum kann dabei helfen, Verläufe und Trends auf einen Blick ersichtlich zu machen. Durch die visuelle Unterstützung ist auch einfach ersichtlich, wenn es sich um einen Ausreisser handelt und keinen generellen Trend. Damit kann die richtigen Massnahmen in die Wege geleitet werden.
  • Erleichterung der Entscheidungsfindung – Datenvisualisierung erlaubt es, Daten rasch zugänglich aufzubereiten und zu erfassen. Mit dem Visualisieren von Daten kann dafür gesorgt werden, dass relevante Stakeholder auf demselben Wissensstand sind und somit fundierte Entscheidungen treffen können.
  • Effektives Storytelling – Abhängig vom Präsentationskontext kann es wirkungsvoller sein, Daten in eine Art Geschichte einzubetten. Durch sogenanntes „Storytelling“ werden komplexe Informationen in eine leicht verständliche Version überführt. Daten werden dabei zueinander in Bezug gesetzt oder um Bemerkungen oder Hintergrundinformationen ergänzt werden.

Wie läuft die Visualisierung von Daten ab

Vereinfacht betrachtet müssen die folgenden Schritte für gute Datenvisualisierung befolgt werden:

  1. Sammlung verlässlicher, fundierter und vollständiger Daten
  2. Auswahl des korrekten Diagrammtyps
  3. Individuelle Gestaltung der Visualisierung
  4. Reduktion auf das Wesentliche (Inhalte ausschliessen, die von den Daten ablenken)
  5. Veröffentlichung/ Teilen der Daten mit relevanten Stakeholdern

Gute Datenvisualisierung – so funktioniert’s!

Wodurch zeichnet sich effektive Datenvisualisierung aus? Datenvisualisierung gilt dann als korrekt und effektiv, wenn sie Daten verständlich darstellt und somit einen Informationsmehrwert bietet. Sind Betrachter in der Lage, Daten zu deuten und auf Basis dieser weiterführenden Fragen zu stellen, ist die Visualisierung geglückt. Die folgenden Punkte helfen dabei, eine gute Datenvisualisierung zu erstellen:

  • Klar definiertes Ziel – Dabei sollte klar definiert sein, welche Aufgabe die Visualisierung wie unterstützen beziehungsweise Lösen soll. Zudem sollte bei der Definition des Ziels auch die Zielgruppe klar definiert sein, um sicherzustellen, dass die Resultate diese erreichen.
  • Vergleich & Ursächlichkeit – Eine Datenvisualisierung dient häufig dazu, Vergleiche herzustellen. Einen Vergleich kann es zum Beispiel zwischen verschiedenen Produkten geben oder Jahresumsätzen. In jedem Fall muss für den Betrachter klar ersichtlich sein, was verglichen wird und dass der Vergleich auf Basis fundierter Daten (z. B. vollständige Daten etc.) stattfindet. Aussagekräftige Visualisierungen zeigen zudem Ursächlichkeiten wie Zusammenhänge, Wirkungen und Mechanismen auf.
  • Datenqualität – Bei der Visualisierung sorgt Datenmenge allein nicht für eine grosse Aussagekraft. Viel wichtiger ist die Datenqualität, sie ist eines der wichtigsten Merkmale für eine qualitativ hochwertige Datenvisualisierung. Daten, die verwendet werden, entscheiden dabei über die Vertrauenswürdigkeit der Darstellung.
  • Grafische Ausführung – Sowohl die Skalierung als auch Farbgebung sollten bei der Datenvisualisierung nicht vernachlässigt werden. Für eine klare und transparente Aufbereitung ist die passende Skalierung essenziell. Somit können fälschliche Aussagen, die zum Beispiel auf schwerer Leserlichkeit beruhen, vermieden werden. Bei der Farbgebung muss die Übersichtlichkeit und Klarheit höchste Priorität haben.
  • Beschränkung auf Wesentliches – Unabhängig davon, ob es um die Ergänzung zusätzlicher Variablen oder Daten geht, es gilt „Weniger ist mehr!“. Dabei sollten zum Beispiel nur so viele Variablen integriert werden, wie benötigt werden, um die gewünschte Informationstiefe und Informationskraft zu erreichen. Auf zweitrangige Informationen sollte zugunsten der besseren Verständlichkeit verzichtet werden.
  • Korrekte Visualisierung – Abhängig von den Inhalten der Daten sollte ein passendes Visualisierungstool ausgewählt werden. Abhängig davon, ob Zeitreihen, Rangfolgen, Korrelationen, Häufigkeiten, geografische Schwerpunkte etc. dargestellt werden sollen, gibt es geeignete Darstellungstypen beziehungsweise Diagrammtyp. Diagrammtypen, welche häufig verwendet werden, sind zum Beispiel Flächendiagramme, Liniendiagramme, Säulendiagramme, Balkendiagramme und Kuchendiagramme.

Datenvisualisierung in Unternehmen

Datenvisualisierung gewinnt nicht nur im privaten (z. B. Ausbildung, Weiterbildung etc.), sondern auch im Unternehmenskontext an Bedeutung. Die Datenvisualisierungstechnologie bietet dabei eine Antwort auf das wachsende Ausmass an Daten. Für Unternehmen bietet die Datenvisualisierung die geeignete Grundlage, um innerhalb von kürzester Zeit wichtige Fragestellungen zu identifizieren und die richtigen Entscheidungen zu fällen. Datenvisualisierung ist branchenübergreifend eine sinnvolle Möglichkeit, um Zusammenhänge, Abweichungen und Ausreiser erkennbar zu machen. Sie ist somit ein Kommunikationstool, dass sowohl die Kommunikation im Unternehmen als auch den Austausch mit externen Stakeholdern erleichtern kann. Die Form der Visualisierung und die Tiefe der dargestellten Daten kann sich dabei von der Zielgruppe, für welche diese erstellt wird, unterscheiden.

Welche Bereiche nutzen Datenvisualisierung

Vertrieb und Marketing In diesem Bereich kann Datenvisualisierung dabei helfen, Quellen für Traffic festzustellen. Zudem können somit auch Trends und Korrelationen verschiedener Marketingaktionen erkannt werden. Finanzwesen Für das Verfolgen von Investment Performances haben sich sogenannte Candlestick-Charts bewehrt. Diese erleichtern Entscheidungen zu Kauf oder Verkauf von Vermögenswerten. Sie zeigen wichtige Informationen wie zum Beispiel Währungen, Aktien, Anleihen und Rohstoffe an. Logistik Redereien können Visualisierungstools zum Beispiel nutzen, um sinnvolle Versandrouten zu ermitteln. Generell profitieren besonders jene Bereiche von Datenvisualisierungen, deren Tätigkeiten auf der Ermittlung von Besonderheiten und Korrelationen auf Basis von Datensätzen basieren.

Anelise Franci

Sofern Ihnen nicht die Fähigkeiten, Kapazitäten oder Tools zur Verfügung stehen, um Ihre Daten selbst visuell aufzubereiten, kann Anelise Franci eine sinnvolle Dienstleistung für Sie sein. Anelise Franci bezieht Daten direkt aus Ihrer Buchhaltung und bereitet diese in Form eines interaktiven Dashboards für Sie auf. Damit können Sie mit nur einem Blick erkennen, wie sich Unternehmenskennzahlen im Vergleich zum Vorjahr verändert haben und welche Produkte im Moment besonders erfolgreich vermarket werden. Zudem können Daten gefiltert werden, um zum Beispiel Daten für ein spezifisches Jahr, Produkt oder geografisches Gebiet zu betrachten.

FAQ

foto by pexels.com

Datenvisualisierung – das macht die Visualisierung von Daten aus & diese Vorteile bringt Sie mit sich!

15. Juli 2021

foto by pexels.com

Was versteht man unter Datenvisualisierung? Datenvisualisierung (=data visualisation) überführt grosse und kleine Datensätze durch grafische Darstellung in eine einfach verständliche und aussagekräftige Form. Im Zuge dieser Darstellung werden Muster, Trends, Ausreisser und Abhängigkeiten ersichtlich. Die Datenvisualisierung macht sich Techniken der Datenanalyse zu nutzen. Die visuelle Darstellung von Daten beziehungsweise Datenmengen, macht diese für das menschliche Gehirn greifbarer. Dabei fällt es Menschen leichter, Farben und Muster zu verarbeiten als eintönige Zeilen und Spalten, welche mit unübersichtlichen Daten gefüllt sind. Datenvisualisierung gilt als ein wesentlicher Bestandteil und Vorteil von BI-Systemen.

Daten, Visualisierungen und Co. – diese Begriffe sollten Sie kennen!

Für ein besseres Verständnis zum Thema Datenvisualisierung kann es zunächst hilfreich sein, die beiden Bereiche Daten und Visualisierung voneinander getrennt zu betrachten. Hierzu werden die folgenden beiden Fragen beantwortet:

Was sind Daten?

Unter Daten werden Informationen verstanden, beziehungsweise Informationseinheiten. Daten können zum Beispiel in Form von Text, aber auch als Zahlen, Tabellen, Datenbanken, Bildern, Audiodateien, Videos etc. auftreten.

Was bedeutet Visualisierung?

Im Rahmen der Visualisierung geht es darum, Daten durch Bilder, Symbole und weitere visuelle Elemente zu erklären und darzustellen. Dem Gehirn werden somit erweiterte Möglichkeiten geboten, die dabei helfen, Gesagtes oder Geschriebenes zu verarbeiten. In diesem Zusammenhang ist es wichtig, Daten, Informationen und Wissen zu unterscheiden. Dabei wird unter Daten (z. B. 2020) per se nur eine Ansammlung von Symbolen und Zeichen verstanden. Diese werden erst durch die Ergänzung um einen Kontext (z. B. Break-even-Point 2020) zu Informationen. Auch Informationen sind ohne zusätzliches Wissen eher nutzlos. Sobald Informationen aber verarbeitet, verknüpft und gespeichert werden, werden sie zu Wissen (Break Even-Point 2020 des Unternehmens XY). Wissen beschreibt somit die gesammelten Informationen, die über einen bestimmten Sachverhalt zur Verfügung stehen.

Vorteile der Datenvisualisierung

Moderne Datenvisualisierung bringt zahlreiche Vorteile für Unternehmen mit sich. Im Folgenden werden die essenziellsten aufgezählt:

  • Daten im korrekten Kontext darstellen – Wie bereits erwähnt, brauchen Daten Kontext um zu Informationen und im nächsten Schritt zu Wissen zu werden. Dies ermöglicht die visuelle Darstellung. Dabei können verschiedene Diagrammarten zueinander in Bezug gesetzt werden, um in der Folge Informationen zu einem Sachverhalt gesammelt, darzustellen.
  • Erkenntnisse aus grossen Datenquellen & Lieferung wichtiger Insights – Grosse Datensätze machen es oft schwer, die richtigen Informationen aus den Daten zu extrahieren. Die Visualisierung von Daten kann hierbei Abhilfe leisten.
  • Rasche und einfache Erkennung von Trends und Mustern -Unternehmerische Entscheidungen werden häufig von KPIs (=Key Performance Indikatoren) abhängig gemacht. Die Visualisierung der Veränderung dieses Indikators über einen Zeitraum kann dabei helfen, Verläufe und Trends auf einen Blick ersichtlich zu machen. Durch die visuelle Unterstützung ist auch einfach ersichtlich, wenn es sich um einen Ausreisser handelt und keinen generellen Trend. Damit kann die richtigen Massnahmen in die Wege geleitet werden.
  • Erleichterung der Entscheidungsfindung – Datenvisualisierung erlaubt es, Daten rasch zugänglich aufzubereiten und zu erfassen. Mit dem Visualisieren von Daten kann dafür gesorgt werden, dass relevante Stakeholder auf demselben Wissensstand sind und somit fundierte Entscheidungen treffen können.
  • Effektives Storytelling – Abhängig vom Präsentationskontext kann es wirkungsvoller sein, Daten in eine Art Geschichte einzubetten. Durch sogenanntes „Storytelling“ werden komplexe Informationen in eine leicht verständliche Version überführt. Daten werden dabei zueinander in Bezug gesetzt oder um Bemerkungen oder Hintergrundinformationen ergänzt werden.

Wie läuft die Visualisierung von Daten ab

Vereinfacht betrachtet müssen die folgenden Schritte für gute Datenvisualisierung befolgt werden:

  1. Sammlung verlässlicher, fundierter und vollständiger Daten
  2. Auswahl des korrekten Diagrammtyps
  3. Individuelle Gestaltung der Visualisierung
  4. Reduktion auf das Wesentliche (Inhalte ausschliessen, die von den Daten ablenken)
  5. Veröffentlichung/ Teilen der Daten mit relevanten Stakeholdern

Gute Datenvisualisierung – so funktioniert’s!

Wodurch zeichnet sich effektive Datenvisualisierung aus? Datenvisualisierung gilt dann als korrekt und effektiv, wenn sie Daten verständlich darstellt und somit einen Informationsmehrwert bietet. Sind Betrachter in der Lage, Daten zu deuten und auf Basis dieser weiterführenden Fragen zu stellen, ist die Visualisierung geglückt. Die folgenden Punkte helfen dabei, eine gute Datenvisualisierung zu erstellen:

  • Klar definiertes Ziel – Dabei sollte klar definiert sein, welche Aufgabe die Visualisierung wie unterstützen beziehungsweise Lösen soll. Zudem sollte bei der Definition des Ziels auch die Zielgruppe klar definiert sein, um sicherzustellen, dass die Resultate diese erreichen.
  • Vergleich & Ursächlichkeit – Eine Datenvisualisierung dient häufig dazu, Vergleiche herzustellen. Einen Vergleich kann es zum Beispiel zwischen verschiedenen Produkten geben oder Jahresumsätzen. In jedem Fall muss für den Betrachter klar ersichtlich sein, was verglichen wird und dass der Vergleich auf Basis fundierter Daten (z. B. vollständige Daten etc.) stattfindet. Aussagekräftige Visualisierungen zeigen zudem Ursächlichkeiten wie Zusammenhänge, Wirkungen und Mechanismen auf.
  • Datenqualität – Bei der Visualisierung sorgt Datenmenge allein nicht für eine grosse Aussagekraft. Viel wichtiger ist die Datenqualität, sie ist eines der wichtigsten Merkmale für eine qualitativ hochwertige Datenvisualisierung. Daten, die verwendet werden, entscheiden dabei über die Vertrauenswürdigkeit der Darstellung.
  • Grafische Ausführung – Sowohl die Skalierung als auch Farbgebung sollten bei der Datenvisualisierung nicht vernachlässigt werden. Für eine klare und transparente Aufbereitung ist die passende Skalierung essenziell. Somit können fälschliche Aussagen, die zum Beispiel auf schwerer Leserlichkeit beruhen, vermieden werden. Bei der Farbgebung muss die Übersichtlichkeit und Klarheit höchste Priorität haben.
  • Beschränkung auf Wesentliches – Unabhängig davon, ob es um die Ergänzung zusätzlicher Variablen oder Daten geht, es gilt „Weniger ist mehr!“. Dabei sollten zum Beispiel nur so viele Variablen integriert werden, wie benötigt werden, um die gewünschte Informationstiefe und Informationskraft zu erreichen. Auf zweitrangige Informationen sollte zugunsten der besseren Verständlichkeit verzichtet werden.
  • Korrekte Visualisierung – Abhängig von den Inhalten der Daten sollte ein passendes Visualisierungstool ausgewählt werden. Abhängig davon, ob Zeitreihen, Rangfolgen, Korrelationen, Häufigkeiten, geografische Schwerpunkte etc. dargestellt werden sollen, gibt es geeignete Darstellungstypen beziehungsweise Diagrammtyp. Diagrammtypen, welche häufig verwendet werden, sind zum Beispiel Flächendiagramme, Liniendiagramme, Säulendiagramme, Balkendiagramme und Kuchendiagramme.

Datenvisualisierung in Unternehmen

Datenvisualisierung gewinnt nicht nur im privaten (z. B. Ausbildung, Weiterbildung etc.), sondern auch im Unternehmenskontext an Bedeutung. Die Datenvisualisierungstechnologie bietet dabei eine Antwort auf das wachsende Ausmass an Daten. Für Unternehmen bietet die Datenvisualisierung die geeignete Grundlage, um innerhalb von kürzester Zeit wichtige Fragestellungen zu identifizieren und die richtigen Entscheidungen zu fällen. Datenvisualisierung ist branchenübergreifend eine sinnvolle Möglichkeit, um Zusammenhänge, Abweichungen und Ausreiser erkennbar zu machen. Sie ist somit ein Kommunikationstool, dass sowohl die Kommunikation im Unternehmen als auch den Austausch mit externen Stakeholdern erleichtern kann. Die Form der Visualisierung und die Tiefe der dargestellten Daten kann sich dabei von der Zielgruppe, für welche diese erstellt wird, unterscheiden.

Welche Bereiche nutzen Datenvisualisierung

Vertrieb und Marketing In diesem Bereich kann Datenvisualisierung dabei helfen, Quellen für Traffic festzustellen. Zudem können somit auch Trends und Korrelationen verschiedener Marketingaktionen erkannt werden. Finanzwesen Für das Verfolgen von Investment Performances haben sich sogenannte Candlestick-Charts bewehrt. Diese erleichtern Entscheidungen zu Kauf oder Verkauf von Vermögenswerten. Sie zeigen wichtige Informationen wie zum Beispiel Währungen, Aktien, Anleihen und Rohstoffe an. Logistik Redereien können Visualisierungstools zum Beispiel nutzen, um sinnvolle Versandrouten zu ermitteln. Generell profitieren besonders jene Bereiche von Datenvisualisierungen, deren Tätigkeiten auf der Ermittlung von Besonderheiten und Korrelationen auf Basis von Datensätzen basieren.

Anelise Franci

Sofern Ihnen nicht die Fähigkeiten, Kapazitäten oder Tools zur Verfügung stehen, um Ihre Daten selbst visuell aufzubereiten, kann Anelise Franci eine sinnvolle Dienstleistung für Sie sein. Anelise Franci bezieht Daten direkt aus Ihrer Buchhaltung und bereitet diese in Form eines interaktiven Dashboards für Sie auf. Damit können Sie mit nur einem Blick erkennen, wie sich Unternehmenskennzahlen im Vergleich zum Vorjahr verändert haben und welche Produkte im Moment besonders erfolgreich vermarket werden. Zudem können Daten gefiltert werden, um zum Beispiel Daten für ein spezifisches Jahr, Produkt oder geografisches Gebiet zu betrachten.

FAQ

Weitere empfohlene Beiträge
Die Coronavirus Pandemie macht auch bei der MwSt nicht halt!

Wie sind Vergütungen aus der staatlichen COVID-Unterstützung MWST-lich zu behandeln? Bei der Kurzarbeitsentschädigung (KAE) handelt es sich im Sinne der MWST um Mittelzuflüsse, die mangels Leistung nicht mit der MWST abzurechnen sind (Art. 18 Abs. 2 MWSTG). Die KAE sind im MWST-Abrechnungsformular unter Ziffer 910 aufzuführen. Ebenfalls unter Ziffer 910 des Abrechnungsformulars zu deklarieren sind […]

6. Juli 2020
...
Neuer Lohnrechner für Entsendefirmen

Das Staatssekretariat für Wirtschaft SECO hat den nationalen Lohnrechner publiziert. Das neue Online-Tool zur Bestimmung der orts-, berufs- und branchenüblichen Löhne in der Schweiz erleichtert den Vollzug der flankierenden Massnahmen zum freien Personenverkehr. Der Lohnrechner liefert ausländischen Betrieben, welche im Rahmen des Freizügigkeitsabkommen Personal in die Schweiz entsenden, Anhaltspunkte zu den üblichen Löhnen in der […]

26. April 2019
...
Vereinfachte Besteuerung der privaten Nutzung von Geschäftsfahrzeugen

Die private Nutzung des Geschäftsfahrzeugs soll gemäss Beschluss der eidgenössischen Räte mit einer Pauschale besteuert werden können, die neu auch die Fahrkosten zum Arbeitsort umfasst. Das Eidgenössische Finanzdepartement (EFD) hat hierzu eine Verordnungsänderung in die Vernehmlassung geschickt. Das EFD schlägt in der Änderung der Berufskostenverordnung vor, dass die private Nutzung des Geschäftsfahrzeugs neu pro Monat […]

30. Juli 2019
...
Steuervorlage 17

Knappe Zustimmung der WAK-N Die Kommission für Wirtschaft und Abgaben des Nationalrats konnte die Detailberatung der Steuervorlage 17 abschliessen. Die Kommission hat am 3. September 2018 getagt. Einzig beim Kapitaleinlageprinzip beantragt die Kommissionsmehrheit eine Änderung gegenüber dem Entwurf des Ständerats. Die Kommission hat das Gesetz in der Gesamtabstimmung äusserst knapp mit 12 zu 11 Stimmen […]

5. September 2018
...
Weitere empfohlene Beiträge
Aktienrecht: die Inhaberaktie ist tot! Es lebe die Namenaktie

Auf den 01.11.2019 ist das «Bundesgesetz zur Umsetzung von Empfehlungen des Global Forum über Transparenz und Informationsaustausch für Steuerzwecke» («Global-Forum-Gesetz») in Kraft getreten. Das zieht für Inhaberaktionäre weitreichende Konsequenzen nach sich. Bisherige gesetzliche Regelung der Meldepflicht: Gemäss Obligationenrecht (OR) musste sich ein Inhaberaktionär einer KMU gegenüber der Gesellschaft mit Vor- und Nachnamen, Adresse und amtlichem […]

15. Januar 2020
...
Quellensteuer-Revision 2021

Ausgangslage Am 15. Dezember 2016 hat das Parlament das Bundesgesetz über die Revision der Quellenbesteuerung des Erwerbseinkommens verabschiedet. Im April 2018 wurde die Quellensteuerverordnung publiziert. Am 12. Juni 2019 hat die Eidgenössische Steuerverwaltung ESTV das Kreisschreiben Nr. 45 zur Quellenbesteuerung des Erwerbseinkommens von Arbeitnehmern publiziert. Seit dem 1.1.2021 ist die Revision der Quellensteuern in Kraft. […]

31. Januar 2021
...
Ab 2019 sind Lotto- und Toto-Gewinne bis 1 Million Franken steuerfrei

In der Volksabstimmung vom 10.06.2018 hatte sich das Volk für das neue Geldspielgesetz entschieden. Die neuen gesetzlichen Bestimmungen sind am 01.01.2019 in Kraft getreten. Das neue Geldspielgesetz ersetzt das Spielbankengesetz aus dem Jahre 1998 und das Lotteriegesetz aus dem Jahre 1923. Das neue Gesetz setzt den Verfassungsartikel über Geldspiele um, den Volk und Stände 2012 […]

20. Februar 2019
...
Weitere empfohlene Beiträge
Revidiertes Aktienrecht: die Vorlage ist erstmals von beiden Räten behandelt!

Was bisher geschah: Im Dezember 2007 verabschiedete der Bundesrat die Botschaft zur Revision des Aktien- und Rechnungslegungsrechts. Am 15. Juni 2018 hiess der Nationalrat die Aktienrechtsreform knapp mit 101 Ja zu 94 Nein-Stimmen gut. Am 11.12.2018 hat der Ständerat mit 23 Ja zu 20 Nein-Stimmen Eintreten auf die Vorlage beschlossen. Am 19.06.2019 hat der Ständerat […]

28. Juni 2019
...
Buchhaltungsprogramme – Wo liegen die Unterschiede & welchen Nutzen bringen sie

Die Buchhaltung dient der systematischen und chronologischen Erfassung aller Geschäftsvorfälle sowie Wertveränderungen. Buchhaltung nimmt somit in erster Linie Zeit in Anspruch. Eine Buchhaltungssoftware kann dabei helfen, diesen Zeitbedarf zu reduzieren, sofern sie richtig eingesetzt wird. [...]

26. Mai 2021
...